
Experiences with StrongARM r©/Linux/RTAI combination

in Mission-Critical Systems

Iztok Kobal
Iskra SISTEMI, d.d.

Stegne 21, 1000 Ljubljana, Slovenia
iztok.kobal@iskrasistemi.si
http://www.iskrasistemi.si

Davor Munda
Kopica, Davor Munda s.p.

Štihova 6, 1000 Ljubljana, Slovenia
davor.munda@kopica-sp.si
http://www.kopica-sp.si

June 06th, 2006

Abstract

Currently can combination of Linux and RTAI be run on various platforms. Yet the decision to choose
one of them relies on many factors of which the stability of the microprocessor in various conditions is
one but not the last of them, obviously. In this paper we want to present the development project where
at start the combination Intel StrongARM/Linux/RTAI seemed very reliable and promising, at least by
Google. However, as the project progresses towards the end of development cycle many unexpected and
nearly unsolvable problems appeared.

1 Introduction

Protection relays in electrical power plants and
electrical power Substation Automation Systems are
there to prevent costly damages to the so-called pri-
mary equipment as are transformers and switchgears
in case of faults within the electrical grid or vice versa
- damages of the grid components in case of faults
on primary equipment. The protection algorithms
cover all kinds of possible misbehaviors in electrical
systems as are over/undervoltage, over/undercurrent
and various short circuit faults and irregularities as
well as some more sophisticated busbar and distant
protections. The mathematics behind the action be-
comes more and more sophisticated since both mar-
ket and standards follow the progress of the micro-
electronics and microprocessor power. Producers are
forced to meet complexity and speed which in many
times are mutual exclusive, especially when the speed
is also mixed with hard real-time requirements.

In the past the software for all digital protec-
tion devices has been designed in-house. No gen-
eral or multipurpose operating systems were avail-
able for such devices due to their limited resource
pool (EEPROM, FLASH, RAM sizes, etc.). Today,
at least combinations of Linux and some hard real-
time extensions (RTLinux, RTAI, ...) appear to be
useful also in mission-critical environments due to
the Linux stability and scalability and also serious
and professional approach of the development teams
of hard real-time extension packages which lately de-
liver stability and optimal performance. We have
decided to use Linux with RTAI extension to meet
real-time requirements.

We have ported Linux kernel 2.4.18 and RTAI
24.1.10 to CEP platform with SA-1110 206 MHz
processor, 64 MB SDRAM and 32 MB Flash mem-
ory. Our external interrupt source is Ethernet
802.3/802.3u 10/100 connected to GPIO01 and we

1

use on-chip peripheral devices that are also inter-
rupt sources: Serial Port1, Serial Port3, Operating
System Timer0, OS Timer2 and OS Timer3. We use
RTAI periodic timer with 1 ms period as base period
for real-time tasks.

Yet, the path to successful integration of Linux
+ real-time extension into such system introduces
some challenges which we would like to present in
this article. Among others we will explain our us-
age of RTAI Watchdog task, the problem with lost
OS Timer interrupt, the problem with current time
timeval value, the problem with restoring interrupts
on StrongARM architecture and some kernel patches
to prevent user space applications crashes.

2 Why have we chosen the

StrongARM/Linux/RTAI at
all ?

Well, we have not been after particular hardware
at first. At that time we wanted to build us soft-
ware pool which could be highly reusable and scal-
able both engineering-wise as well as in the future de-
velopment cycles. We wanted object-based elements
which could offer our sales and engineering teams
more than just compact devices with narrow prede-
termined roles in the system. We wanted to develop
on PCs. We wanted all this because the effort to
rewrite software every time we had to change hard-
ware platform was the payload so high for us that we
hardly afforded it.

Another reason to take a general purpose oper-
ating system were market demands which obviously
headed towards extensive network exploitation both
with the process data sharing as well as with the
file system sharing. We have already identified big
potentials of (S)FTP, HTTP etc. in Substation Au-
tomation Systems.

Another problem was that we already had some
important and stable code parts written in Modula-
2 and we also wanted to use various proven pro-
gramming languages and methods - whatever would
be at disposal and satisfy the particular task needs
and/or software engineer. So we ended up with the
shell scripting and also Modula-3, not mentioning of
course C/C++ languages and XML technologies.

So we have decided to choose among systems which
already have offered these functionalities or at least
were showing to potentially cover them in the future.

At our disposal were QNX, VxWorks, Windows CE
and Linux. First two choices were basically too ex-
pensive for us. Windows CE had no possibility for
reliable hard real-time at that time. And none of
them except for Linux have covered all medium per-
formance hardware platforms as were ARMs and low
end PowerPCs. And none of them except for Linux
offered us to develop & test on PC as target with
all technologies listed above and only later on to re-
compile the software for final target hardware plat-
form (or more of them) without portability pains. At
least we thought so at that time ...

One way or another, we learned that the decision
to choose Linux paid-off very soon. We are currently
using services, clients and other pieces of software
as are Apache, NTP, PCRE, OpenSSH with SSH(D)
and SFTP(D), logrotate, cron and for sure we have
forgotten some pieces which are just too natural to
be used to pay attention on.

The decision to use RTAI was based on idea that
we would like to develop real-time part of functionali-
ties in user space and test them in hard real-time only
after being debugged from programmer-level errors.
RTAI seemed ideal for that since it had LXRT, user
space soft real-time system, with nearly the same
API as was for hard real-time system. The only dif-
ference for us, as a matter of fact, was only with the
task start procedure. We just did not expect to use
some special features of RTAI which did not appear
in LXRT.

And, finally, why have we chosen Intel
TM

Stron-
gARM. We have evaluated more CPU boards. Our
requirements were the CPU, RAM, FLASH, Ether-
net, at least 2 serial ports and expansion port. Fi-
nally we have chosen CEP module (IskraTEL Elec-
tronics, Slovenia, http://www.iskratel.si). The low
power consumption, 235MIPS, Slovenian producer
and relative low price prevailed against other boards.

2

FIGURE 1: IskraTEL CEP1000 CPU
board

StrongARM was only the first of the micropro-
cessors that we intended to use. We have built the
system which allowed us very high state of indepen-
dency from the hardware platform and very short
time to port the software as long as we are able to
stick with Linux.

3 What software do we run ?

There are really three segments of software being
run on the target:

• functional part on top of the RTAI

• data communication part

• system supervising part

Functional part

Functional part covers all autonomous protection
functions. They have to be prompt and fast. Al-
gorithms are mainly based on simple discrete differ-
ential equations so the timings should be accurate
to get good results. We would like to rock’n’roll on
millisecond rhythm while cover two or more protec-
tion bays which is rather courageously since nobody
does this yet, as far as we know. We optimized the
system by grouping the tasks on the cycle time and
mutual dependency basis, thus diminishing the CPU
load caused by context switching.

Some would say that the 206MHz 235MIPS mi-
croprocessor should easily cope with such load un-
less the amount of data was presented to them. To-
tal amount of data needed to do the job correctly
with the single 3-phase switchgear protection field
is more than 500 words, most of them harmonics.
Large number of measurements must be transferred
from the input peripheral modules each and every
millisecond while majority of them on slightly longer
cycle. Still, this presents big effort to CPU and this is
why we are using co-processor for data preprocessing
as are fast Fourier transforms and digital debounce
filters.

Data communication part

This software segment is responsible for forward-
ing the picture of controlled process to the super-
vising control level, often called SCADA level. Com-
munication protocols in Substation Automation Sys-
tems are object oriented and very complex. Lately,
the link layer should mostly be implemented as net-
work service (DNP and IEC60870 standards). More-
over, upcoming IEC61850 standard introduces un-
seen data communication complexity by implement-
ing encapsulated data services. In one of its parts
even tends to replace the hard backplane data bus
by distributing small amount of data over the net-
work in real-time and will have to be implemented
also within the above described functional part.

Obviously, C programming language is not enough
for implementing such protocols anymore. We are
using C++ and Modula-3 object languages instead.

System supervising part

For this part we are using two services:

• HTTP run by stripped-down Apache serving
HTML and CGI

• proprietary service called NEO3000 SPM iS-
erver Communication (N3KSC)

Having failed to use the XSLT technology to im-
plement both on-line and off-line supervising, param-
eterizing and project management tool, we had to
exploit Java on client side while on server side re-
tained heavy XML/XSD/DOM utilization. Power-
ful distributed file system, parameterization, license
and package management are implemented to satisfy
high demands of off-line project management while
on-line every single function can be controlled and
every piece of diagnostics or controlled process state
could be traced.

3

4 Problems with RTAI

We had to present the complexity of the co-
operating functionality to enlighten the first prob-
lem we were confronted with at very start of RTAI
usage in connection with following demands for mod-
ern protection devices:

• five nines (99.999%) availability class, six nines
(99.9999%) in near future

• all-time possibility for remote device supervi-
sion

• extensive self diagnosis and auto recovery

What does this mean for the system where the
RT-extender like RTAI rules in the system? Well,
when one of real-time tasks gets loose we even do
not get the blue screen of death, rather nothing. The
system becomes not responsive. Because of the five
nines rule we can not afford even restart caused by
hardware watch-dog since the long Linux reboot time
throws us out of the standard (it allows us 315 sec-
onds of unavailability per year) with, let say, only
three restarts caused by system or application fault.
As for the near future, six nines mean 31 seconds
of unavailability per year and as a consequence only
one fault per 2 years is allowed.

Unlike with the industry class controllers, pro-
cess dynamics in Substation Automation Systems is
equal to zero most of the time. But when something
bad happens everything goes crazy and devices must
swallow it and react properly. We do have simula-
tors for such cases but we really can not test the
SAS for all possible combinations of process states.
What we are afraid of is not that one of functions
would stall. Such situation should also be consid-
ered but it is not very probable considering all those
type-tests that we do before really starting to put on
market the certain functional combination. It is al-
ready enough that one of functions consumes slightly
too much time. In such case another function does
not do its task on time or the mathematics relying
on the strict cycle times starts to give invalid results.
And more, in case of coding error and one of tasks
stalls or goes endless loop, user space processes are
not functional anymore.

It certainly helps that by standard the functions
like e.g. overcurrent protection are always doubled
with slightly different parameters. One checks simple
effective current limits, another checks 1st or higher
differential, yet another checks harmonic distortions,
each protection stage with slightly different reaction

delay. We can be sure that even if one of functional-
ities misfired another would do it right. But only if
it has its chance.

4.1 RTAI Watchdog Task Usage

While testing RTAI performances, we found out
that UP Scheduler had a built-in capability to com-
pensate for lost ticks of periodic tasks. To comply
with application requirements we needed to control
spent CPU time per each real-time task and remain-
der CPU time for Idle Linux task and, of course, lost
task ticks.

First we patched RTAI UP Scheduler to contain
spent CPU time within rt task struct structure. The
following structure to the rt task struct structure was
added:

typedef struct {

RTIME sum_uptime; /* uP time summa */

RTIME sched_intime; /* sched in time */

RTIME max_uptime; /* maximum uP sched time */

} RTWD_TINFO;

Structure members represent:
sum uptime : spent CPU time summa
sched intime : sched in time mark
max uptime : max time spent within one tick.

In rtai sched.c source code appropriate values to the
added structure were assigned. In init module and
rt task init functions values were initialized, and in
switch task the time spent was calculated.

Next RTAI Watchdog was patched to check CPU
spent time for real-time tasks and for Idle Linux task.
The data to the user space application was sent via
RTFIFO device.
We started Watchdog as the highest priority task
with RTAI periodic timer period (1 ms).
Watchdog policy was to suspend all real-time tasks
if any task missed its period, or in case Idle Linux
task used less than 20% processor time in the last
second. Idle Linux task and Watchdog task stayed
in operation.
User space application controlling Watchdog via RT-
FIFO got all the required data to start appropriate
recovery action in case of tasks suspension.

Of course, we can not prevent the system crash in
case of segmentation fault in kernel space unless ker-
nel itself starts to support some kind of exceptioning
model.
Nevertheless, we have achieved total control over the
overrunning tasks which allows us proper diagnostics

4

and remote device access with manual or automatic
recovery. Idle Linux task reached enough CPU time
to cover non real-time application requests. And last
but not least, task accounting provided important
information to the engineers in the system tuning
phase.

4.2 Lost Operating System
Timer Interrupt

With an intervention into RTAI UP Scheduler
code the switch task OS Timer0 latency was in-
creased.
OS Timer0 interrupt is used on StrongARM archi-
tecture as system interrupt when scheduler deadline
is reached.
RTAI protects StrongARM OS Timer0 with the fol-
lowing code:

if (delay)

next_match = OSMR0 = delay + OSCR;

else

next_match = (OSMR0 += rt_times.periodic_tick);

while ((int)(next_match - OSCR) < LATENCY_TICKS){

next_match = OSMR0 = OSCR + LATENCY_TICKS;

}

Where OSCR represents System Timer free run-
ning counter with frequency 3686400 Hz, OSMR0
represents OS Timer0 Match Register and LA-
TENCY TICKS is calculated Timer ticks to cover
2600 ns latency. Because latency was increased, we
missed the next Timer0 match when short delay or
period had been set. So we lost OS Timer0 interrupts
for the whole OSCR cycle (1165 sec). This problem
was solved by patching the code with the following
intervention:

addon = 3; /* register write latency */

while ((int)(next_match - OSCR) < LATENCY_TICKS){

OSSR = OSSR_M0; /* Clear match on timer0 */

next_match = OSMR0 = OSCR+LATENCY_TICKS+addon;

addon++;

}

It is noteworthy that a similar solution was used in
later RTAI releases.

However, in the next step of the evaluation process
we noticed that OS Timer0 Interrupt could still be
lost. At this point we realized that we could protect
OS Timer0 Interrupt with another OS Timer Inter-
rupt. As StrongARM has four OS Timer Interrupts
implemented, we decided to use OS Timer2 Inter-
rupt, and to use it in the following manner: RTAI
UP Scheduler was patched again and the code to the
rt timer handler ISR routine was added:

#ifdef __arm__

hard_save_flags_and_cli(flags);

if (oneshot_timer) {

/*2 ms*/

OSMR2 = (nano2count(1000000) << 1) + OSCR;

}

else {

/*2 periods*/

OSMR2 = (rt_times.periodic_tick<<1)+OSCR;

}

hard_restore_flags(flags);

#endif

And we implemented OS Timer2 ISR routine:

#ifdef __arm__

static void buggy_timer_wakeup_isr(

int irq,

void *dev_id,

struct pt_regs *regs)

{

unsigned long flags;

hard_save_flags_and_cli(flags);

OSSR = OSSR_M2; /* Clear match on timer2 */

hard_restore_flags(flags);

/* Timer0_interrupt did not fire */

rt_timer_handler();

return;

}

#endif /* __arm__ */

Naturally, the requested initialization was also im-
plemented.
This intervention ensured the recovery of the lost OS
Timer0 interrupt after one missed periodic tick. This
is not what we would like to see happening. We tol-
erate it since it happens only when bigger number
of tasks is being started nearly simultaneously which
normally is the case only at system start.

4.3 Problem with Current Time

The next problem that we encountered concerns
the buggy current time stamps. Linux’s functions
do gettimeofday / gettimeofday are intended for cur-
rent time access. Interface API offers microseconds
accuracy. We noticed that our real-time time stamps
for events did not record the correct sequence: Later
events had earlier time stamps than earlier events.
Many Linux system features also use that kind of
time stamps (e.g. device and network drivers).

5

Linux do gettimeofday function calls gettimeoffset
function whose implementation presupposes 10 ms
OS Timer0 tick latch. Function sa1100 gettimeoffset
implementation contains the code:

ticks_to_match = OSMR0 - OSCR;

elapsed = LATCH - ticks_to_match;

usec = (unsigned long)(elapsed*tick)/LATCH;

Since RTAI Scheduler sets OSMR0 to match real-
time period, this implementation gives wrong results,
which are fixed every 10 ms through system jiffies up-
date. So instead of microsecond accuracy, we got 10
ms accuracy.

Here we implemented RTAI tick and RTAI tick
counter to fix elapsed ticks. Again, we patched
RTAI UP Scheduler to set the proper tick value
and to count elapsed ticks. And we patched ker-
nel timer functionality to properly set and up-
date system timer xtime value (Linux function up-
date wall time one tick). We fixed Linux function
sa1100 gettimeoffset with the following code:

ticks_to_match = OSMR0 - OSCR;

elapsed = rtai_latch - ticks_to_match;

usec = (unsigned long)

(elapsed*rtai_tick)/rtai_latch;

/* Fix usec */

usec += rtai_tick_cnt * rtai_tick;

In this way we managed to get correct time
stamps and to fix the Linux system current time
value.

4.4 Restoring Interrupts
Problem

In spite of our efforts to build a reliable and avail-
able real-time system we would still come across a
situation with all disabled interrupts (OS Timer in-
terrupts were also lost), which meant losing our tar-
get device. We noticed that such a situation could
take place when real-time tasks were active and we
got heavy traffic on interrupt sources (e.g. serial and
ethernet devices).

Because StrongARM does not support any NMI
(except Watchdog Timer), we didn’t have any tool to
recover from such a situation without reboot device.
At this point we implemented StrongARM Watch-
dog Timer driver. On StrongARM we could use OS
Timer3 as a watchdog. After a proper initialization
process, OS Timer3 served as a non maskable watch-
dog timer.
After time out deadline was reached, reset was ap-
plied, and boot process started.

Admittedly, such a reboot process breaks device
availability. Our boot process - with application
start included - takes about 3 minutes. Which is
why we were still looking for a solution to avoid un-
restorable disabled interrupts.

Linux cli and sti functionality uses the MSR
CPSR c instruction. It is known that the Strong-
ARM processor has a bug and the first instruction
following MSR CPSR c is executed twice.

We patched kernel arm assembler files in manner
to adding NOP (mov r0, r0) instructions after MSR
CPSR c instructions.

In the Intel
TM

StrongARM Developer’s Manual [?]
we found that the interrupt-enabling write to the
CPSR must be separated from the interrupt dis-
abling write to the CPSR by at least two instruc-
tions.

So we patched kernel include/asm-arm/proc-
armv/hard system.h file (here cli and sti functional-
ity for StrongARM is implemented) with adding two
NOPs after CPSR write instructions.

At this point we got stable kernel and RTAI re-
lease for real-time tasks.

But when we added another serial port device
(interrupt source) with intensive traffic to the sys-
tem, we got a situation with all disabled interrupts
again.

Because we were sure that we correctly patched
kernel for the StrongARM architecture, we started
to examine RTAI dispatch interrupts routine.

In the RTAI 3.1 release we found Thomas Gleixner
patches for StrongARM that fixed race conditions
with IRQ/SRQ handling. We implemented the same
solution in the RTAI 24.1.10 release. We patched
RTAI core file arch/arm/rtai.c and we finaly got
completely stable Linux real-time release.

5 Some other annoying

problems which we have met
during development and are

not related to RTAI

5.1 ARM 32-bit alignment

Luckily, we have found that article in DrDobb’s
Journal which dealt with some issues connected to
the StrongARM development and code portability.
The strict 32-bit structure field alignment and 32-bit

6

alignment of larger-than-8-bit casts of pointer tar-
gets was just the most painfull. It only showed that
we had became negligent in the past when we had
mostly targeted the ix86 platforms which had not
such restriction.

At the end of the day we had to search for each
and every pointer dereference and check it on possi-
ble non 32-bit alignment. It resulted to extensive use
of accessor/mutator functions and hiding the struc-
ture and object declarations whenever we could not
avoid non 32-bit alignment of objects with size larger
than single byte. This especially referred to the in-
terpretations of the communication protocols.

5.2 GNU/G++’s -O3 and exceptions
bugs

We are using gcc-2.95.3. The bugs are really not
related to the GCC version since the stuff works
properly for ix86 platforms. But what the bugs really
mean for the running system?

-O3 introduces some time optimizations, like inlin-
ing, which we obviously can not use. It really means
that the resulting code can never be as time optimal
as it could be.
Even with -O2 optimization flag set, we found mem-
cpy bug for the StrongARM architecture (move word
to the odd address), so we had to take care of mem-
cpy usage.

Exceptions basically work. But only if thrower and
catcher are in the same executable. This refers, of
course, also to shared objects. You can imagine that
exceptions are out of question in the system like ours
which is based on shared objects. Some would say
that exceptions should not be used anyway. Well,
depends on the point of view. Exceptions really help
with auto-recovery issues if properly used. Not men-
tioning that in many times the source code becomes
more readable if exceptions are used.

5.3 Linux 2.4.x kernel IPC semaphore
bug

During user space application test process we
found IPC bug that caused application crash. In
Linux file ipc/util.h routine ipc checkid is imple-
mented with the following code:

if(uid/SEQ_MULTIPLIER != ipcp->seq)

return 1;

return 0;

Where ipcp pointer can be corrupted. This results in
application crash.

We patched this code with ipcp pointer check:

if ((unsigned long)ipcp < PAGE_SIZE) return 1;

if(uid/SEQ_MULTIPLIER != ipcp->seq)

return 1;

return 0;

Our tests show that we have got stable Linux
real-time environment for real-time tasks and for user
space applications. To achieve this goal, we also had
to implement some other Linux kernel patches (e.g.
ethernet driver, file system driver, etc.).

6 Conclusion

Our experiences with RTAI Linux extension on
StrongARM processor show that Linux with GNU
Toolchain is a scalable, robust and portable system,
convenient for embedded platforms. RTAI exten-
sion adds hard real-time functionality to the system.
With Linux and RTAI we can cover hard real-time
application requirements.

Open source policy enables interventions into the
code to solve problems which are met in the develop-
ment cycle. This is a big benefit, and it supports the
decision to implement Linux and RTAI on embedded
platforms.

Our experiences also show that developers can en-
counter many unexpected system problems in the
development cycle. To solve the system problems
some system knowledge is required. Without this
knowledge Linux RTAI application implementation
is likely to turn into quite a painful task.

References

[1] Allesandro Rubini, 1998, Linux Device Drivers,
O’Reilly, ISBN: 1-56592-292-1.

[2] Craig Hollabaugh, 2002, Embedded Linux, Pear-
son Education, ISBN: 0672322269.

[3] Intel, 2001, Intel StrongARM SA-1110 Micropro-
cessor, Developer’s Manual.

[4] AlephOne, 2001, ARMLinux for Developers.

[5] DIAPM-RTAI, 2000, A Hard Real Time support
for LINUX, Manual.

[6] IskraTEL, 2002, CEP, Hardware version 1.0,
Manual.

7

Definitions, Abbreviations

Apache HTTP server (http://www.apache.org)

API Application Program Interface

CPU Central Processing Unit

EEPROM, FLASH Electrically Erasable and
Programmable Read-Only Memory

HTTP HyperText Transfer Protocol

LXRT RTAI user space soft hard real-time system
for Linux

NTP Network Time Protocol

PCRE Perl Compatible Regular Expressions
(http://www.pcre.org)

RAM Random Access Memory

RT Real Time

RTAI Real Time Application Interface
(http://www.rtai.org)

SAS Substation Automation System

SFTP Secure File Transfer Protocol

SSH Secure Shell (http://www.openssh.com)

StrongARM Member of Intel
TM

ARMv4 family of
microprocessors

8

